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Statistics based on spacings, or the gaps between points, have been widely used in many contexts, primarily
in testing goodness of fit. This paper derives Edgeworth-type asymptotic expansions for the sum of functions
of s-step spacings where s, the order of spacings, may increase together with the sample size n. When s is
fixed, it is known that only the Greenwood test, based on the sum of squares of these spacings, is first-order
asymptotically efficient. In contrast, it is shown here that if s goes to infinity, there exist many other tests
which are first-order efficient.We introduce and study the second-order efficiency of such tests and show that
if s is sufficiently large relative to n, the Greenwood test is no longer second-order efficient. Interestingly,
we see that the common phenomenon of first-order efficiency implying second-order efficiency does not
hold true in this situation.

Keywords: spacings; goodness-of-fit tests; higher-order expansions; asymptotic efficiencies; Pitman
efficiency; second-order efficiency
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1. Introduction and review

Let X1, X2, . . . , Xn−1 be independent random variables (r.v.s) with a common absolutely continuous
distribution function F with support on the unit interval [0,1]. Let X1,n ≤ X2,n ≤ · · · ≤ Xn−1,n be
the corresponding order statistics. For an integer s ≥ 1, the disjoint spacings of step size or ‘order’
s are defined as

Wm,s = Xms,n − X(m−1)s,n, m = 1, 2, . . . , N ,

with the notation X0,n = 0, Xn,n = 1, and N = n/s, which is assumed to be an integer, without loss
of generality, for the asymptotic theory. We allow for s to increase with n, i.e. s = s(n), but with
the proviso that s = o(n). When s = 1, these are called one-step spacings or simply spacings.

One may, in general, consider what have been called ‘asymmetric’ statistics of the form
TN (W) = ∑N

m=1 fm(nWm,s), where fm, m = 1, 2, . . . , N , are a given sequence of real functions
defined on non-negative reals. But for the reasons given below, the class of ‘symmetric’ statistics,
where {fm, m = 1, 2, . . . , N} are the same for all m, is of considerably more interest. Thus, for
a given real function f on the non-negative real axis, most of this paper (except Section 2) is
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2 S.M. Mirakhmedov and S.R. Jammalamadaka

concerned with symmetric class of test statistics

SN (W) =
N∑

m=1

f (nWm,s). (1)

The spacings clearly depend on n, and the function f may also depend on n in the cases we
consider, but for simplicity of notation we suppress the extra subscript n. Most common and
well-known examples of spacings tests of the form (1) are the so-called Greenwood statistic

G2
N =

N∑
m=1

(nWm,s − s)2,

the Log-spacings statistic which is sometimes called the Moran statistic

MN =
N∑

m=1

log(nWm,s),

the entropy-type statistic

HN =
N∑

m=1

nWm,s log(nWm,s),

the Kimball statistic

Kγ ,N =
N∑

m=1

(nWm,s)
γ , γ (γ − 1) �= 0, γ > − s

2
,

and the Rao statistic

RN =
N∑

m=1

|nWm,s − s|.

We are interested here in using statistics of the form (1) in goodness-of-fit problems, which,
through a probability integral transformation, can be reduced to testing the null hypothesis of
uniformity, i.e.

H0: F(x) = x, 0 ≤ x ≤ 1.

Statistics of the type (1) are of great interest in several contexts including hypothesis testing
and reliability (see, for instance, Pyke 1965, for a somewhat back dated but a very useful review),
circular data analysis where they play a pivotal role because they provide a maximal invariant
under the rotation group (see, e.g., Jammalamadaka and SenGupta 2001), and spacings-based
parameter estimation (see, e.g., Ghosh and Jammalamadaka 2000), just to name a few applications.
Correspondingly, there is a rich literature devoted to such statistics and their use. Given that these
spacings are highly dependent random quantities with a Dirichlet distribution under H0 in finite
samples, large-sample theory is the main avenue for studying such statistics. For some exact
distribution theory in finite samples, see, e.g., Rao (1976) and Rao and Sobel (1980).

Further, in trying to decide which of these tests performs better, one needs to investigate their
asymptotic efficiencies (AEs). Among others, comparison of asymptotic local powers of such
tests is one important way to of assessing their AEs. In order to study the local powers of spacings
statistics, we consider a sequence of alternatives

H1n: Fn(x) = x + L(x)δ(n), 0 ≤ x ≤ 1, (2)
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Journal of Nonparametric Statistics 3

where δ(n) → 0, as n → ∞, and L(x) are ‘sufficiently smooth’ (to be made precise later in
Section 3).

The alternatives (2) need some explanation. When δ(n) = n−1/2, the locally most powerful
test among the asymmetric class, based on one-step spacings (or s-step spacings for any fixed
s), is linear in the spacings and is thus a weighted linear combination of the order statistics (see,
e.g., Holst and Rao 1981). The test statistics depend specifically on the particular alternative, i.e.
the function L(x), and perform poorly against any other alternative, and therefore are not very
interesting. On the other hand, if one considers symmetric statistics in spacings, no power is
obtained for alternatives at a ‘distance’ of n−1/2 and this is connected with a result of Chibisov
(1961). However, as shown in Rao and Sethuraman (1975), power for such symmetric tests based
on one-step spacings can only be obtained when δ(n) = n−1/4, but however as a bonus, one obtains
‘omnibus’ tests, i.e. ones whose form does not depend on the alternative L(x). Statistics based on
s-step (or higher order) spacings are shown to be asymptotically more efficient (see, e.g., Del Pino
1979; Rao and Kuo 1984) with their Pitman efficiency increasing monotonically with any finite
step size s. This led to investigations about letting the step size s also increase as a function of the
sample size n. Jammalamadaka, Zhou, and Tiwari (1989) have shown that symmetric tests can
discriminate alternatives (2) with δ(n) = (ns)−1/4 which are somewhat closer to the rate n−1/2, if
s → ∞. Also, it is shown that the optimal choice of the spacings step is s = O(n3/5) to maximise
the Pitman efficiency.

Note that the spacings can be considered as grouping of the observations with random end points
for the class intervals and, as a result, one should expect some loss in information contained in the
sample. Indeed, there is a duality between the chi-square tests which compare the observed and
expected frequencies holding the number of classes fixed, and the s-step Greenwood test which
compares the observed and expected cell-lengths holding the observed number in each cell fixed
at the step size s. Jammalamadaka and Tiwari (1985, 1987) show that the Greenwood test based
on spacings is superior to a comparable chi-square test for any fixed s, but when s → ∞, these
two tests have asymptotically the same Pitman efficiency (cf. Jammalamadaka et al. 1989).

When δ(n) = (ns)−1/4, the alternatives converge to the null at a rate that keeps the asymptotic
power bounded away from the ‘level’ of the test and 1, and form a family of Pitman alternatives.
The Greenwood test is known to be optimal within this family, i.e. in terms of the Pitman AE (see,
for instance, Sethuraman and Rao 1970; Del Pino 1979; Rao and Kuo 1984; Jammalamadaka et al.
1989; Mirakhmedov and Naeem 2008). Another alternative family arises when one assumes that
δ(n) remains constant, i.e. alternatives do not approach the hypothesis. Zhou and Jammalamadaka
(1989) showed that for this family of alternatives, the Greenwood test is inferior to the Log-
spacings test in terms of the Bahadur AE. Furthermore, these alternatives (2) with δ(n) → 0
and δ(n)(ns)1/4 → ∞ provide yet another family of intermediate alternatives. Mirakhmedov and
Naeem (2008) and Mirakhmedov (2010) showed that the Greenwood test is still optimal within this
subfamily of intermediate alternatives with δ(n) = o(ns2)−1/6 but is inferior to tests satisfying the
Cramér condition (such as the Log-spacings and the Rao statistics) within intermediate alternatives
when δ(n)(ns2)1/6 → ∞ (see Mirakhmedov 2010, for details).

As stated above, for the alternatives (2) with δ(n) = (ns)−1/4, the Greenwood test is asymptot-
ically most powerful (AMP) within this class (1) for all finite step sizes s and is the unique AMP
test for any fixed s. Nevertheless, as we show in Section 3, if s → ∞ then there are also other
AMP tests, e.g. the Log-spacings, Kimball’s, and Entropy-type tests. One should therefore con-
sider further comparison of these tests based on higher-order expansions for the power functions
of these tests. We introduce and study the second-order efficiency for such AMP tests in Section 3.
We show that for s � n1/3, the Greenwood test loses the optimality property, in the sense of not
being second-order efficient. Interestingly, we see that the common phenomenon of first-order
efficiency implying second-order efficiency (see Bickel, Chibisov, and van Zwet 1981) does not
hold true in this situation.
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4 S.M. Mirakhmedov and S.R. Jammalamadaka

We now mention a few papers that deal with limit theorems for spacings statistics. Results on
the central limit theorem and Berry–Esseen bounds for the remainder term, both under the null
hypothesis and under the alternatives (2), have been studied by Rao and Sethuraman (1975), Del
Pino (1979), Does and Klaassen (1984), Deheuvels (1985), Kuo and Jammalamadaka (1984),
Mirakhmedov (2005), and Baryshnikov, Penrose, and Yukich (2009), among others. Edgeworth-
type asymptotic expansions under the null hypothesis have been derived by Does, Helmers, and
Klaassen (1987) and Kalandarov (2001). Large deviation results were obtained by Zhou and
Jammalamadaka (1989), Mirakhmedov (2006), and Mirakhmedov, Tirmizi, and Naeem (2011).

The current work aims to do several things. Our primary goal is to unify as well as generalise
many existing results, so that we cover many facets of the spacings theory, including (i) fixed
and increasing step sizes, (ii) different types of AEs, e.g. the Pitman, Bahadur, and intermediate
efficiencies, and (iii) providing general results for deriving higher-order asymptotic expansions,
which underlie the discussion of second-order efficiencies of spacings tests.

The paper is organised as follows: we first consider general asymmetric statistics of the form

TN (D) =
N∑

m=1

fm(nDm,s), (3)

where Dm,s are s-spacings in a sample from U[0, 1] distribution, i.e. under the null hypothesis. In
Theorem 2.1, we provide Edgeworth expansions of the distribution function, say PN (x), of TN (D)

in the form PN (x) = �(x) + ϕ(x)(a(s)
1N (x)N−1/2 + a(s)

2N (x)N−1 + · · · + a(s)
kN (x)N−(k−3)/2) + rkN ,

where �(x) and ϕ(x) are the standard normal distribution function and its density function,
respectively, k ≥ 3, and the remainder term satisfying rkN = O(N−(k−2)/2). This expansion is
valid for any fixed s, as well as when it may depend on n with s = o(n). The integral equation (11)
for the characteristic function (c.f.) of statistics TN (D) makes use of known results on the c.f. of
a sum of independent random vectors (r.vec.) and provides a general technique for determining
the coefficients a(s)

jN (x), as given in Equation (22); the explicit form of these coefficients a(s)
1N (x)

and a(s)
2N (x) are obtained for each of the spacings statistics mentioned earlier. Such results not only

provide closer approximations of the distribution function relative to the Central Limit Theorem,
but are also essential in comparing the higher-order efficiencies of these tests; they are also useful
in comparing tests based on moderate samples (see, e.g., Penev and Ruderman 2010). In Section 3,
these results are used to get asymptotic expansions for the power functions of these tests and to
compare their second-order efficiencies. The proofs of all the main results are presented in the
appendix.

Notationally, in what follows c and C, with or without subscripts, are universal positive con-
stants; we use the same symbol θ for a quantity that satisfies |θ | ≤ 1 although it varies by context;
all asymptotic statements are considered when n → ∞. Throughout the paper, Z and Zs are
independent Gamma r.v.s with the probability density function (pdf)

γs(u) = us−1e−uI{u > 0}
�(s)

, (4)

where �(s) is the gamma function, �(x) and ϕ(x), as mentioned above, are the standard normal
distribution function and its pdf, respectively, and I{A} is the indicator of the set A.

2. Asymptotic expansion for the sum of functions of uniform spacings

This section deals with the distribution theory under the null hypothesis of uniformity, for the
general class of asymmetric spacings statistics (see Theorem 2.1) and then the result specialised
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Journal of Nonparametric Statistics 5

to the symmetric class mentioned in Equation (1) (see Theorem 2.3). This latter theorem is used
to obtain Edgeworth-type expansions for the standard tests mentioned in Section 1.

It is convenient to use a special notation for the case of observations from the uniform
distribution. We will use U1, U2, . . . , Un−1 for a sample from the uniform [0,1] distribution,
U1,n ≤ U2,n ≤ · · · ≤ Un−1,n for its order statistics, and Dm,s = Ums,n − U(m−1)s,n for their s-step
spacings. We will now derive Edgeworth-type asymptotic expansions for the general asymmetric
statistics of the form

TN (D) =
N∑

m=1

fm(nDm,s),

where fm, m = 1, 2, . . . , N , are a given sequence of real functions defined on non-negative real
axis.

We refer to Di = Di,1, i = 1, 2, . . . , n, as simple uniform spacings, which one may recall are
closely tied to exponential r.v.s. If L(X) denotes the distribution of the r.vec. X, it is well known
that L(nD1, . . . , nDn) = L((Y1, . . . , Yn)|∑n

i=1 Yi = n), where Y1, Y2, . . . , Yn are independent r.v.s
with common exponential distribution with mean 1. Then the partial sums

Zm =: Zm,s = Y(m−1)s+1 + · · · + Yms, m = 1, 2, . . . , N

have the pdf γs(u) given in Equation (4). We assume that Ef 2
m(Zm) < ∞. Define

ςN =
N∑

m=1

Zm, TN =
N∑

m=1

fm(Zm), AN = ETN ,

gm(u) = fm(u) − Efm(Zm) − (u − s)cov(TN , ςN )n−1, (5)

VN =
N∑

m=1

gm(Zm), σ 2
N = Var VN , and VN (D) =

N∑
m=1

gm(nDm,s).

It is easy to check that

EVN = 0, cov(VN , ςN ) = 0, (6)

and σ 2
N = (1 − corr2(TN , ςN ))Var TN . Since VN (D) is just a centred version of TN (D), i.e.

VN (D) = TN (D) − AN , we shall work with VN (D) instead of TN (D); this is more convenient
in view of Equation (6). Set

g̃m = gm(Zm)

σN
, Z̃m = Zm − s√

n
, (7)


N (t) = 1√
2π

∫ ∞

−∞
�N (t, τ) dτ , (8)

with

�N (t, τ) =
N∏

m=1

ψm(t, τ), ψm(t, τ) = E exp{itg̃m + iτ Z̃m}.

As in Mirakhmedov (2005), we have, for any m ≥ 1, v ≤ N ,

∫ ∞

−∞
|ψm(t, τ)ψν(t, τ)| dτ ≤

√∫ ∞

−∞
|ψm(t, τ)|2 dτ

∫ ∞

−∞
|ψv(t, τ)|2 dτ ≤ √

2πN , (9)
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6 S.M. Mirakhmedov and S.R. Jammalamadaka

which implies ∫ ∞

−∞
|�N (t, τ)| dτ ≤ √

2πN . (10)

The conditional representation for the spacings in terms of exponential r.v.s mentioned
before allows us to write L(VN (D)) = L(VN |ςN = n), and hence E exp{itσ−1

N VN (D)} =
E(exp{itσ−1

N VN }|ςN = n). Using Equation (10) and the fact

E exp{itσ−1
N VN + iτ(ςN − n)} =

∫ ∞

−∞
eiτ(u−n)γn(u)E(exp{itσ−1

N VN }|ςN = u) du,

we have, by Fourier inversion, the following Bartlett-type formula:

φN (t)
def= E exp

{
it

VN (D)

σN

}
= 1

2π
√

nγn(n)

∫ ∞

−∞
�N (t, τ) dτ = 
N (t)


N (0)
, (11)

where γn(n) is the pdf of ςN as given in Equation (4).
A formal construction of the asymptotic expansion for φN (t) that comes from formula (11) is

as follows. The integrand function �N (t, τ) is the c.f. of a sum of N independent two-dimensional
r.vec.s (g̃m, Z̃m). Because of Equation (6), this sum has zero expectation, unit covariance matrix,
and uncorrelated components. From Bhattacharya and Rao (1976, Chapter 2) (which will be
referred to as BR from now on), it is well known that under suitable conditions, the c.f. �N (t, τ)

can be approximated by a power series in N−1/2, coefficients of which are polynomials with respect
to (wrt) t and τ containing the factor exp{−(t2 + τ 2)/2}. Hence that series can be integrated wrt
the variable τ over the interval (−∞, ∞). As a result of this integration, we obtain a power series
in N−1/2, say QN (t) (see Equation (19)). Now we replace

√
2πnγn(n) = 
N (0) by its series

approximation, which is actually QN (0). Finally, we obtain the asymptotic expansion for φN (t)
by dividing QN (t) by QN (0).

The procedure outlined above needs somewhat long and complex calculations, although
manageable. Assume that E|gm(Zm)|k < ∞, k ≥ 3, and set,

ρj,N =
N∑

m=1

E|g̃m|j, (12)

where g̃m is as in Equation (7). Let Pm,N (t, τ), m = 1, 2, . . . , be the well-known polynomials wrt τ
and t from the theory of asymptotic expansion of the c.f. of a sum of independent r.vec.s (see BR,
p. 52), in our case concerning the vector sum (g̃1, Z̃1) + · · · + (g̃N , Z̃N ); the degree of Pm,N (t, τ)

is 3m and the minimal degree is m + 2; the coefficients of Pm,N (t, τ) only involve the cumulants
of the r.vec.s (g̃1, Z̃1), . . . , (g̃N , Z̃N ) of order (m + 2) or less. In particular,

1√
N

P1,N (t, τ) = i3

6

N∑
m=1

E(tg̃m + τ Z̃m)3,

1

N
P2,N (t, τ) = i4

24

N∑
m=1

(E(tg̃m + τ Z̃m)4 − 3(E(tg̃m + τ Z̃m)2)2) + 1

2N
P2

1,N (t, τ).

Define functions Gm,N (t) where G0,N (t) = 1 and

Gm,N (t) = 1√
2π

∫ ∞

−∞
Pm,N (t, τ) exp

{
−τ 2

2

}
dτ , m = 1, 2, . . . . (13)
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Journal of Nonparametric Statistics 7

Using Equation (6) and the notation

αi,j,N =
N∑

m=1

Eg̃i
mZ̃j

m, (14)

we find

1√
N

G1,N (t) = (it)3

6
α3,0,N − it

2
α1,2,N , (15)

1

N
G2,N (t) = (it)6

72
α2

3,0,N + (it)4

24

[
α4,0,N − 3

N∑
m=1

α2
20m − 3α2

2,1,N − α3,0,Nα1,2,N

]

+ (it)2

8

[
3α2

1,2,N + 2√
Ns

α2,1,N − 2α2,2,N + 4
N∑

m=1

(Eg̃mZ̃m)2 + 1

N

]
− 1

12Ns
.

We note that E(Zm − s)l is a polynomial of degree 	l/2
 wrt s, and also

ρj,N ≥ N−(j−2)/2, j ≥ 2. (16)

Because of this and Lemma 9.5 of BR (p. 71), we have

|Pm,N (t, τ)| ≤ C(m)(1 + (t2 + τ 2)3m/2)ρ
m/(k−2)

k,N , (17)

so that

|Gm,N (t, τ)| ≤ C1(m)(1 + t3m)ρ
m/(k−2)

k,N . (18)

Set

Qr,N (t) = e−t2/2
r−3∑
m=0

N−m/2Gm,N (t), r ≤ k. (19)

Using Stirling’s formula

v! = √
2πv vv exp

⎧⎨
⎩−v +

l∑
j=1

B2j

2j(2j − 1)v2j−1
+ O

(
1

v2l

)⎫⎬
⎭ ,

where B2j are Bernoulli numbers (see Abramowitz and Stegun 1972, p. 257), we have


−1
N (0) = (

√
2πnγn(n))−1 = (n − 1)!√

2πnnn−1e−n
=

	(k−2)/2
∑
m=0

b(m)n−m + o(n−	(k−2)/2
), (20)

where b(m) are constants depending only on m. In particular, b(0) = 1, b(1) = − 7
12 . In view of

Equations (16) and (18), we use Equation (20) to define the functions rm,N (t) from the equality

(
√

2πnγn(n))−1Qk,N (t) = e−t2/2(ϒk,N (t) + O(N−(k−2)/2)),

where

ϒj,N (t) = e−t2/2
j−3∑
m=0

N−m/2rm,N (t).
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8 S.M. Mirakhmedov and S.R. Jammalamadaka

In particular, we have

ϒ3,N (t) = exp

{
− t2

2

}
,

ϒ4,N (t) = exp

{
− t2

2

}
(1 + N−1/2G1,N (t)), (21)

ϒ5,N (t) = exp

{
− t2

2

}
(1 + N−1/2G1,N (t)) + N−1(G2,N (t) − G2,N (0)).

Let �j,N (x) be defined by the equation ∫∞
−∞ eitx d�j,N (x) = ϒj,N (t). Such �j,N (x) can be

obtained by formally substituting ((−1)ν/
√

2π)(dν−1/dxν−1) e−x2/2 in place of (it)ν e−t2/2 for
each ν in the expression for ϒj,N (t) (see Lemma 7.2 of BR). Using Equation (15), we have, in
particular,

�3,N (x) = �(x),

�4,N (x) = �(x) − ϕ(x)

[
H2(x)

6
α3,0,N − 1

2
α1,2,N

]
,

�5,N (x) = �(x) − ϕ(x)

[
H2(x)

6
α3,0,N − 1

2
α1,2,N + H5(x)

72
α2

3,0,N

+ H3(x)

24

(
α4,0,N − 3

N∑
m=1

α2
20m − 3α2

2,1,N − α3,0,Nα1,2,N

)

+ H1(x)

8

(
3α2

1,2,N + 2√
Ns

α2,1,N − 2α2,2,N + 4
N∑

m=1

(Eg̃mZ̃m)2 + 1

N

)]
, (22)

where Hν(x) is the νth-order Hermite–Chebishev polynomial, namely H1(x) = x, H2(x) = x2 − 1,
H3(x) = x3 − 3x, and H5(x) = x5 − 10x3 + 15x.

We thus arrive at the main result of this section,

Theorem 2.1 Consider the general asymmetric spacings statistic TN (D) given in Equation (3).
Then for any integer k ≥ 3, there exists a constant C > 0 such that

sup
x

|P(TN (D) < xσN + AN ) − �k,N (x)| ≤ C(ρk,N + I{k > 3} exp{−N(1 − χN )}√nN log ρ−1
k,N ),

where AN , σ 2
N , ρk,N , and �k,N (x) are defined in Equations (5), (12), and (22), and

χN = 1

N

N∑
m=1

sup
c(ρ3,N σN )−1≤|t|≤c(ρk,N σN )−1

τ∈(−∞,∞)

|E exp{itfm(Zm,s) + iτZm,s}| (23)

for a constant c > 0.

When k = 3, we obtain the following special case (which corresponds to Corollary 2 of
Mirakhmedov 2005).

Corollary 2.1 There exists a positive constant C such that
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Journal of Nonparametric Statistics 9

sup
x

|P(TN (D) < xσN + AN ) − �(x)| ≤ Cρ3,N .

Results on asymptotic expansions for the moments of this statistic are of interest on their own.
From Lemma A.3, we obtain the following asymptotic expansion results, the second part of which
improves Lemma 3.4 of Does and Klaassen (1984).

Theorem 2.2 (1) If E|gm(Zm)|3 < ∞ then

ETN (D) =
N∑

m=1

Efm(Zm) + c1θ1σNρ3,N and Var TN (D) = σ 2
N (1 + c2θ2ρ3,N ).

(2) If E|gm(Zm)|4 < ∞ then

ETN (D) =
N∑

m=1

Efm(Zm) − 1

2n

N∑
m=1

Egm(Zm)(Zm − s)2 + c3θ1σNρ4,N ,

and
(3) if E|gm(Zm)|5 < ∞ then

Var TN (D)

= σ 2
N

(
1 + 1

4

(
3α2

1,2,N + 2√
n
α2,1,N − 2α2,2,N + 4

N∑
m=1

(Eg̃mZ̃m)2 + 1

N

)
+ c4θ2ρ5,N

)
,

with the notation used in Equations (5), (12), and (14).

Now we return to the symmetric statistic (1) of interest, for which we consider a two-term
expansion. In this case, gm(u) reduces to

g(u) = f (u) − Ef (Z) − (u − s)s−1 cov(f (Z), Z),

with

Var g(Z) = (1 − corr2(f (Z), Z))Var(f (Z)) = σ 2 say. (24)

Define

χ = sup
(t,τ)∈�

|E exp{itf (Z) + iτZ}|, (25)

where � = {(t, τ) : cσ 2/E|g(Z)|3 ≤ |t| ≤ cN1/2σ 3/E|g(Z)|4, τ ∈ (−∞, ∞)}. Let P0 stand for
the probability under the null hypothesis H0.

Theorem 2.3 Assume that E|g(Z)|4 < ∞. Let SN (W) be the general symmetric statistic defined
in Equation (1). Then there exists a constant C such that

sup
x

∣∣∣∣P0

{
SN (W) − NEf (Z)

σ
√

N
< x

}
− �(x) − ϕ (x)√

N

[
(1 − x2)Eg3(Z)

6σ 3
+ Eg(Z) (Z − s)2

2sσ

]∣∣∣∣
≤ C

(
Eg4(Z)

Nσ 4
+ √

Nn log N e−N(1−χ)

)
. (26)

Remark 2.1 From Lemma 3.1 of Does et al. (1987), we have the following.
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10 S.M. Mirakhmedov and S.R. Jammalamadaka

If (c, d) ⊂ (0, ∞) is an open interval on which f is almost everywhere differentiable with
derivative f ′ which is not essentially constant on (c, d), then the following condition, known as
Cramer’s condition

lim sup
|(t,τ)|→∞

|E exp{itf (Z) + iτZ}| < 1, (27)

is fulfilled. Hence, the second term inside the brackets on the rhs of Equation (20) is exponentially
small whenever

σ 2

E|g(Z)|3 ≥ c > 0. (28)

Remark 2.2 Recall the representation L(VN (D)) = L(VN |ςN = n) stated at the beginning of
this section. In view of this, the first term in the square bracket in Equation (26) corresponds to
the standardised third-order cumulant of VN , which is a sum of independent r.v.s; the second term
is the result of the fact that the statistic VN (D) is defined by centralising TN (D) by AN , which is
asymptotic rather than being the exact value of the expectation, namely ETN (D) (see Part 2 of
Theorem 2.2).

We now discuss how this Theorem 2.3 applies to each of the special cases of symmetric statistics
that were mentioned in Section 1 (computational details are omitted).

(A) Greenwood statistic. For the Greenwood statistic, we have f (x) = (x − s)2.

Theorem 2.4 The asymptotic expansion for the Greenwood statistic is given by

P0

{
G2

N − Ns√
2Ns(s + 1)

< x

}

= �(x) + ϕ(x)√
N

(√
2(s2 + 5s + 4)(1 − x2)

3(s + 1)3/2
√

s
+

√
1

2

(
1 + 1

s

))
+ O

(
1

N

)
.

(B) Log-spacings statistic. For the Log-spacings statistic, we have f (x) = log x. For integers m ≥ 1
and k ≥ 1, let

ψ(m) =
m−1∑
j=1

1

j
and ζ(m, k) =

∞∑
j=k

1

jm

be the digamma function and Hurwitz zeta function, respectively.

Theorem 2.5 The asymptotic expansion for the Log-spacings statistic is given by

P0

{
MN − Nψ(s)√

N(ζ(2, s) − s−1)
< x

}

= �(x) + ϕ(x)√
N

(
(1 − 2s2ζ(3, s))(1 − x2)

6(sζ(2, s) − 1)3/2
√

s
+ 1

2
√

s(sζ(2, s) − 1)1/2

)
+ O

(
1

N

)
.

(C) Entropy-type statistic. In this case, f (x) = x ln x. Applying these in Theorem 2.3, we obtain
the following.

Theorem 2.6 If s → ∞, then the asymptotic expansion for the Entropy statistic is given by

P0

{
HN − Nψ(s + 1)√
Ns(s + 1)ζ(2, s) − s

< x

}
= �(x) + ϕ(x)√

N

(
5
√

2(1 − x2) + 3
√

2

2

)
+ O

(
1√
ns

+ 1

N

)
.
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(D) Kimball statistics. Here, we have f (x) = xγ , with γ (γ − 1) �= 0. Put q(u) = �(s + u)/�(s).

Theorem 2.7 If s → ∞ and γ < 1, then the asymptotic expansion for the Kimball statistic is
given by

P0

{
Kγ ,N − Nq(γ )√

q(2γ ) − (1 + γ 2s−1)q2(γ )
< x

}

= �(x) + ϕ(x)√
N

[√
2(γ 2 + 3γ − 2)(1 − x2)

12γ (γ − 1)
+

√
2

2

]
+ O

(
1√
ns

+ 1

N

)
.

(E) Rao’s statistic. In this case, f (x) = |x − s|. Let �(m, y) = ∫∞
y um−1 e−u du, y > 0, denote the

upper incomplete gamma function and with γm(u) as in Equation (4), define

a(s) = 2sγs(s), b(s) = 2 e−s
s∑

m=0

sm

m! − 1, d(s) = 4

�(s)
(s�(s, s) + ss e−s(1 + s)) − 2s,

κ(s) = Eg3(z) = (3b2(s) + 1) d(s) + s(3a(s)(b2(s) − 1) − 2b(s)(b2(s) + 3)) + 2a3(s),

σ 2(s) = s

⎡
⎣1 − 4sγ 2

s (s) −
(

1 − 2 e−s
s∑

m=0

sm

m!

)2
⎤
⎦ .

With these notation and using Theorem 2.3, we obtain the following theorem.

Theorem 2.8 Let s ≥ 1 be fixed. Then the asymptotic expansion for the Rao statistic is given by

P0

{
RN − Na(s)

σ (s)
√

N
< x

}
= �(x) + ϕ(x)√

N

[
κ(s)(1 − x2)

6σ 3(s)
+ d(s)

2sσ(s)

]
+ O

(
1

N

)
.

If we let s → ∞, then the second term on the rhs in the asymptotic expansion for the Rao statistic
takes the following simple form:

e−x2/2

√
2πN

[√
2π(1 − x2)

3 (π − 2)3/2 +
√

2

π − 2

]
.

Remark 2.3

(i) Theorems 2.6 and 2.7 are presented for the case s → ∞ in order to have reasonably nice
expressions; an asymptotic expansion, which is valid for any fixed integer s ≥ 1, can be
written using exact formulas (A20)–(A24); however, they are very messy and are avoided.
Indeed Theorem 2.7 is still valid for any γ which is not zero or one, for any fixed s ≥ 1,
because in this case, condition (2.24) is satisfied.

(ii) The conditions ‘γ < 1’in Theorem 2.7 and ‘s ≥ 1 fixed’in Theorem 2.8 are technical and are
assumed in order to satisfy the simple sufficient condition (2.24). However, we conjecture
but cannot yet prove that a result similar to Lemma A.5 should be true for Kimball’s and
Rao’s statistics, which then allows us to remove these restrictive conditions.

(iii) Note that in the case when s → ∞, more terms in the asymptotic expansion might be needed
(as in the case of triangular arrays) and cannot be written simply as series in powers of N−1/2

since the asymptotic behaviour of each term depends on how fast s increases. For instance,
this phenomenon is reflected in terms involving 1/

√
ns in the remainder term of Theorems

2.6 and 2.7; note that this term will be dominating if the number of spacings N � n2/3.
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12 S.M. Mirakhmedov and S.R. Jammalamadaka

3. Asymptotic efficiencies

In this section, we consider testing the null hypothesis of uniformity against the sequence of
alternatives

H1: Fn(x) = x + L(x)(ns)−1/4, 0 ≤ x ≤ 1, (29)

where L(0) = L(1) = 0, L′(x) = l(x) is continuous on [0,1] and l′(x) exists.
We consider tests based on symmetric statistics SN (W) and assume that we reject H0 for large

values of the statistic SN (W). We will refer to such a test as an f -test, for short.
We continue using the notation of previous sections, in particular, g(Z) and σ 2 as defined in

Equation (24). Also let βSN (W)(l) stand for the power function of the test based on the statistic
SN (W), and with ZZ a r.v. with the pdf γ s(u) given in Equation (4), define

Z2 = Z2 − 2(s + 1)Z + s(s + 1),

Z3 = Z3 − 3(s + 2)Z2 + 3(s + 1)(s + 2)Z − s(s + 1)(s + 2),

μ(s, f ) = corr(g(Z), Z2), ν(s, f ) = corr(g(Z), Z3), ‖l‖k
k =

∫ 1

0
lk(x) dx, (30)

�ω(l, s, f ) = ‖l‖2
2 μ(s, f )

√
(s + 1)

2s
− uω, uω = �−1(1 − ω).

Let C(k) stand for the class of functions with continuous derivatives of order j = 0, 1, . . . , k.

Theorem 3.1

(i) Let f ∈ C(2), E|g(Z)|3/σ 3
√

N → 0, as n → ∞, then

βSN (W)(l) = �(�ω(l, s, f )) + o(1). (31)

(ii) Let f ∈ C(3), E|g(Z)|4 < ∞, and the condition (22) be fulfilled. Then

βSN (W)(l(x)) = �(�ω(l, s, f ))

− ϕ(�ω(l, s, f ))

(
(1 − �2

ω(l, s, f ))Eg3(Z)

6σ 3
√

N
+

√
s + 1

2Ns
μ(s, f )

+ ‖l‖3
3√

6

ν(s, f )

N1/4
(1 + o(1))

)
+ O

(
1

N
max

(
1,

Eg4(Z)

σ 4

))
. (32)

From Equations (31) and (32), we see that the function μ(s, f ) plays a key role in determining the
asymptotic nature of the f -tests. To see the significance and meaning of μ(s, f ), we note (cf. Del
Pino 1979)

μ(s, f ) = corr(g(Z), (Z − s)2) = corr0(SN (W), G2
N (W))(1 + o(1)), (33)

so that |μ(s, f )| ≤ 1, and |μ(s, f )| = 1 for any s, only for the Greenwood statistic G2
N , i.e. the

Greenwood test is AMP within the class of f -tests; it is the unique AMP test for any fixed s. But
if s → ∞ we can and do have additional AMP tests, because there exist other f -tests for which
|μ(s, f )| → 1 as s → ∞. For example, by direct calculations, we find:
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for the Log-statistic

μ2(s, log x) = 1

2(s + 1)(sζ(2, s) − 1)
= 1 − 1

s
+ O

(
1

s2

)
, (34)

for entropy-type statistic

μ2(s, x log x) = 1

2(s + 1)[(s + 1)ζ(2, s + 1) − 1] = 1 − 1

3s
+ O

(
1

s2

)
, (35)

and for Kimball statistics

μ2(s, xγ ) = γ 2(γ − 1)2q2(γ )

2s(s + 1)
(
q(2γ ) − (1 + γ 2s−1)q2(γ )

) = 1 − (γ − 2)2

3s

(
1 + O

(
1

s

))
. (36)

Hence, all of these three statistics will also generate AMP tests. However, for Rao’s statistic

μ2(s, |x − s|) = 2(s + 1)γ 2
s+2(s)

1 − 4sγ 2
s (s) − (1 − 2 e−s

∑s
m=0 sm/m!)2

= 1

π − 2

(
1 + O

(
1

s

))
, (37)

so that Rao’s statistic does not generate an AMP test even as s → ∞. Numerical values of μ(s, f )
for these statistics are presented in Tables 1 and 2, for some reasonable step sizes s.

The values on the first row correspond to the Pitman efficiencies obtained in Sethuraman and
Rao (1970) for one-step spacings. As s → ∞, the efficiencies increase monotonically to 1 as
expected, except for Rao’s test.

Table 1. Numerical values of μ2(s, f ) for the Log-spacings, Rao, and
entropy-type statistics.

s μ2(s, log x) μ2(s, |x − s|) μ2(s, x log x)

1 0.3876 0.5727 0.8625
2 0.5750 0.6759 0.9019
3 0.6764 0.7264 0.9239
4 0.7391 0.7565 0.9380
5 0.7816 0.7765 0.9476

10 0.8798 0.8218 0.9706
20 0.9368 0.8476 0.9844
30 0.9571 0.8567 0.9894
50 0.9740 0.8643 0.9935

100 0.9872 0.8701 0.9967

Table 2. Numerical values of μ2(s, f ) for the Kimball statistics.

γ

s −1/2 −1/4 1/4 1/2 3/2 2 5/2 3 4

μ2(S, Xγ )

1 Does not exist 0.2072 0.5424 0.6723 0.9678 1.00 0.9725 0.9000 0.6792
2 0.3162 0.4536 0.6802 0.7695 0.9766 1.00 0.9793 0.9230 0.7407
3 0.4839 0.5858 0.7554 0.8229 0.9817 1.00 0.9834 0.9375 0.7826
4 0.5860 0.6670 0.8023 0.8565 0.9850 1.00 0.9861 0.9473 0.8129
5 0.6545 0.7216 0.8342 0.8794 0.9873 1.00 0.9881 0.9545 0.8358

10 0.8110 0.8473 0.9084 0.9330 0.9928 1.00 0.9930 0.9729 0.8983
20 0.909 0.9198 0.9517 0.9646 0.9961 1.00 0.9962 0.9850 0.9423
30 0.9328 0.9456 0.9672 0.9759 0.9973 1.00 0.9973 0.9896 0.9597
50 0.9592 0.9670 0.9800 0.9853 0.9984 1.00 0.9983 0.9936 0.9749

100 0.9794 0.9833 0.9899 0.9928 0.9992 1.00 0.9992 0.9967 0.9870
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14 S.M. Mirakhmedov and S.R. Jammalamadaka

The AMP tests can now be compared with each other by using the higher-order terms of the
asymptotic expansion of their powers, using Theorem 3.1.

Let S1,N (W) and S2,N (W) be any two statistics of the form (1) with kernel functions f1 and f2,
and let βS1,N (W)(l) and βS2,N (W)(l) be their respective power functions.

Definition 3.1 The AMP f1-test is called ‘second-order asymptotically efficient’ wrt f2-test if

lim
N→∞

√
N(βS1,N (W)(l) − βS2,N (W)(l)) ≥ 0.

In particular, applying Equation (32) to the specific examples of symmetric statistics and putting
�ω(l) = 2−1/2 ‖l‖2

2 − uω, we can show (see the appendix)

βG2
N
(l) = �(�ω(l)) − ϕ(�ω(l))

√
2

N

(
1 − �2

ω(l)

3
+ 1

2

)(
1 + O

(
1

s

))
+ O

(
1

N

)
, (38)

βMN (l) = �(�ω(l)) − ϕ(�ω(l))

( ‖l‖2
2

2
√

2 s
(1 + O(s−1))

+
√

2

N

(
1 − �2

ω(l)

3
+ 1

2

)
+

√
2 ‖l‖3

3

3(ns)1/4

)
+ O

(
1

N

)
, (39)

βHN (l) = �(�ω(l)) − ϕ(�ω(l))

( ‖l‖2
2

6
√

2 s
(1 + O(s−1))

+
√

2

N

(
5(1 − �2

ω(l)) + 3

2

)
+ ‖l‖3

3

6(ns)1/4

)
+ O

(
1√
ns

+ 1

N

)
, (40)

βKN (l) = �(�ω(l)) − ϕ(�ω(l))

(
(γ − 2)2 ‖l‖2

2

6
√

2 s
(1 + O(s−1))

+
√

2

N

(
(γ 2 + 3γ − 2)(1 − �2

ω(l))

12γ (γ − 1)
+ 1

2

)
+

√
2(γ − 2)2 ‖l‖3

3

6(ns)1/4

)
+ O

(
1√
ns

+ 1

N

)
.

(41)

Now we consider the problem of second-order asymptotic efficiency (SOAE) within this class
of AMP tests, especially when compared with the Greenwood test. Any of these tests can be
SOAE iff s−1 = o(N−1/2), corresponding to the case when the step size s is higher order than
n1/3, i.e. s � n1/3; note that in this situation we have (ns)−1/4 = o(N−1/2). For such an s, com-
parison of Equations (38)–(40) shows that the Log-test is SOAE but entropy-type is not. Note
that βK2,N (�ω) = βG2

N
(�ω) as it should be. On the other hand, a comparison of Equation (38)

with Equation (41) shows that the Kimball test Kγ ,N is SOAE wrt to the Greenwood test for
γ ∈ (−s/2, 0) ∪ [1/3, 1) ∪ [2, ∞), while failing to be so for values of γ ∈ (0, 1/3) ∪ (1, 2).

These results show that the well-known phenomenon of first-order efficiency generally implying
second-order efficiency (see, e.g., Bickel et al. 1981) does not hold true here. This effect arises
mainly because we are dealing with the case when the step of the spacings s depends on the sample
size n. This is similar to the phenomenon that has been observed for tests based on grouped data
when the number of groups increases along with the sample size (see, e.g., Kallenberg 1985;
Ivchenko and Mirakhmedov 1992).
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Appendix

Recall the notation used in Section 2, and the assumption made, namely that E|gm(Zm)|k < ∞ for some integer k ≥ 3
and ρk,N = ∑N

m=1 E|g̃m|k . Without loss of generality, we assume that ρk,N ≤ 1. In the course of the proofs, we shall omit
standard algebra as well as computational details of absolute constants, as we are interested only in the asymptotic results.
Set

Pk,N (t, τ) = e−(t2+τ2)/2
k−3∑
m=0

N−m/2Pm,N (t, τ),

where the polynomials Pm,N (t, τ) are defined just before Equation (13).

Lemma A.1 There exist constants c1 > 0, c2 > 0, and C > 0 such that if |t| ≤ c1ρ
−1/k
k,N , |τ | ≤ c2N (k−2)/2k , then for

l = 0, 1, . . . , k ∣∣∣∣ ∂ l

∂tl
(�N (t, τ) − Pk,N (t, τ))

∣∣∣∣ ≤ Cρk,N (1 + |t|k−l + |τ |k−l) e−(t2+ τ2)/4.

Lemma A.1 follows from Theorem 9.11 of BR because of Equation (6), and the facts that
∑N

m=1 (g̃m, Z̃m) has unit
correlation matrix and

∑N
m=1 E|Z̃m|k < C(k)N−(k−2)/2.

Lemma A.2 There exist constants c1 > 0, c2 > 0, and C > 0 such that if |t| ≤ c1ρ
−1
3,N and |τ | ≤ c2

√
N then for

l = 0, 1, . . . , k ∣∣∣∣ ∂ l

∂tl
�N (t, τ)

∣∣∣∣ ≤ C(1 + |t| + |τ |)l exp

{
− t2 + τ 2

6

}
.

Lemma A.2 can be proved by standard algebra outlined, e.g. in BR (pp. 67, 68, and 125–128).

Lemma A.3 There exist constants c1 > 0 and C > 0 such that if |t| ≤ c1ρ
−1
3,N then for l = 0, 1, . . . , k∣∣∣∣ ∂ l

∂tl
(φN (t) − ϒk,N (t))

∣∣∣∣ ≤ Cρk,N (1 + |t|k−l) e−t2/2.

Proof Let |t| ≤ c1ρ
−1/k
k,N . Equations (8), (13), and (19) imply∣∣∣∣ ∂ l

∂tl
(
N (t) − Qk,N (t))

∣∣∣∣ ≤ 1√
2π

∫
|τ |≤c2N(k−2)/2k

∣∣∣∣ ∂ l

∂tl
(�N (t, τ) − Pk,N (t, τ))

∣∣∣∣ dτ

+ 1√
2π

∫
c2N(k−2)/2k≤|τ |≤c2

√
N

∣∣∣∣ ∂ l

∂tl
�N (t, τ)

∣∣∣∣ dτ + 1√
2π

∫
|τ |≥c2N(k−2)/2k

∣∣∣∣ ∂ l

∂tl
�N (t, τ)

∣∣∣∣ dτ

+ 1√
2π

∫
|τ |≥c2

√
N

∣∣∣∣ ∂ l

∂tl
�N (t, τ)

∣∣∣∣ dτ

def= (�1 + �2 + �3 + �4). (A1)

Note that ρ
−1/k
k,N ≤ ρ−1

3,N , since ρ3,N ≤ ρ
1/(k−2)

k,N ≤ ρ
1/k
k,N . Applying Lemmas A.1 and A.2 and the definition of Pk,N (t, τ)

along with the inequalities (16) and (17), we show, after some simplification, that

�1 + �2 + �3 ≤ Cρk,N (1 + |t|k−l) e−(t2/6). (A2)
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Let |τ | ≥ c2
√

N . We have

|ψm(t, τ)| ≤ |E exp{itZ̃m}(exp{itg̃m} − 1) + E exp{itZ̃m}| ≤ |t|E|g̃m| + |E exp{itZ̃m}|
≤ exp{−(1 − |E exp{iτ Z̃m}|) + |t|E|g̃m|} ≤ exp{−c3 + |t|E|g̃m|}, (A3)

where we use the inequality x ≤ ex−1 and the fact that 1 − |E exp{iτ Z̃m}| = 1 − (1 + (τ/
√

Ns)2)−s/2 ≥ c3. Using the
notation

∏N (l)
m=1 for the product over m = 1, 2, . . . , N with some l of the factors replaced by 1, we have

N∏
m=1

|ψm(t, τ)| ≤ e−c4N ,
N (l)∏
m=1

|ψm(t, τ)| ≤ el e−c4N , (A4)

using
∑N

m=1 E|g̃m| ≤ √
N , |t| ≤ c1ρ

−1/k
k,N ≤ c1N (k−2)/2k , see Equation (16). We have∣∣∣∣ ∂

∂t
ψm(t, τ)

∣∣∣∣ ≤ t2Eg̃2
m + |tτ |E|g̃mZ̃m| ≤ 1.5t2Eg̃2

m + 0.5|τ |EZ̃2
m,

∣∣∣∣ ∂ l

∂tl
ψm(t, τ)

∣∣∣∣ ≤ E|g̃m|l , l ≥ 2. (A5)

Using Leibniz’s rule for differentiation of the product of N functions, and the relations (A4), (A5), and (9), we obtain after
some algebra, similar to that in BR (pp. 127–128),

�4 ≤ c exp{−c5N}. (A6)

Now, we use Equations (A1), (A2), and (A6) to obtain∣∣∣∣ ∂ l

∂tl
(
N (t) − Qk,N (t))

∣∣∣∣ ≤ Cρk,N (1 + |t|k−l) e−t2/6. (A7)

In particular, from this and Equation (20), we have


N (0) = Qk,N (0) + Cθn−	(k−2)/2
 ≥ c for some c > 0. (A8)

Equations (11), (A7), and (A8) imply Lemma A.3 after some simple algebra, for |t| ≤ c1ρ
−1/k
k,N .

Now let c1ρ
−1/k
k,N ≤ |t| ≤ c1ρ

−1
3,N . By virtue of Equations (A8) and (11), we have∣∣∣∣ ∂ j

∂tj
(φN (t) − ϒk,N (t))

∣∣∣∣ ≤ C

[∫
|τ |≤c2

√
N

∂ j

∂tj
�N (t, τ) dτ + �4

]
+

∣∣∣∣ ∂ j

∂tj
ϒk,N (t)

∣∣∣∣ . (A9)

Since
∑N

m=1 E|g̃m| ≤ √
N , |t| ≤ c1

√
N , and ρ3,N ≥ N−1/2, the inequalities in Equation (A4) still hold by choosing c1 ≤

c3/2. Now we use Lemma A.2 and Equation (A6), respectively, for the two terms inside the square bracket in Equation
(A9); the proof of Lemma A.3 is complete from Equation (19) and the facts that |t| ≥ c1ρ

−1/k
k,N and the function ϒk,N (t)has

the factor exp{−t2/2}. �

Proof of Theorem 2.1 We have∣∣φN (t) − ϒk,N (t)
∣∣ ≤

∣∣∣∣
∫ t

0

d

du
(φN (u) − ϒk,N (u)) du

∣∣∣∣ ≤ |t| sup
|u| ≤ |t|

∣∣∣∣ d

du
(φN (u) − ϒk,N (u))

∣∣∣∣ .

Using this and the well-known Esseen’s smooth inequality (see, Feller 1971), we have

|P(TN (D) < xσN + AN ) − �k,N (x)| ≤ 1

π

[∫
1≤|t|≤c1ρ−1

3,N

|φN (t) − ϒk,N (t)| dt +
∫

0≤|t|≤1

∣∣∣∣ d

dt
(φN (t) − ϒk,N (t))

∣∣∣∣ dt

]

+ 1

π

∫
c1ρ−1

3,N ≤|t|≤c1ρ−1
k,N

|t||φN (t) − ϒk,N (t)| dt + 24

c1
√

2π
ρk,N

= 1

π
[J0 + J1] + 1

π
J2 + 24

c1
√

2π
ρk,N . (A10)

By Lemma A.3, we obtain
J0 + J1 ≤ Cρk,N . (A11)

Using the inequality x < ex−1 for c1ρ
−1
3,NσN ≤ |t| ≤ c1ρ

−1
k,NσN , we have

N∏
m=3

|E exp{itfm(Zm) + iτZm}| ≤ e2 e−N(1−χN ), (A12)

where χN is as defined in Equation (23). On the other hand, as in Equation (11), one can check that

φN (t) = 1

2πγn(n)

∫ ∞

−∞
E exp{itfm(Zm) + iτZm} dτ . (A13)

Using Equations (9), (A8), and (A12) and the definition of ϒk,N (t), we show that

J2 ≤ C
√

nN log ρ−1
k,N exp{−N(1 − χN )}.

Theorem 2.1 now follows from Equations (A10) and (A11), last inequality and fact that if k = 3 then J2 = 0. �
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Proof of Theorem 2.2 Follows from Lemma A.3 by putting l = 1 and l = 2. �

Proof of Theorem 2.3 Follows from Theorem 2.1 by putting k = 4 in view of Equations (9) and (16). �

Proof of Remark 2.1 The proof follows from Lemma 3.1 of Does et al. (1987). �

Lemma A.4 Let X be an r.v. taking values in Rm, the distribution of which is absolutely continuous in some Borel
set B with P{X ∈ B} > 0. Let φ : Rm → Rk be a measurable function, which is Lebesgue almost everywhere differ-
entiable on B with the k × m matrix φ′ as the differential. If all γ ∈ Rk\{0} satisfy P{(φ′)Tγ = 0|X ∈ B} < 1, then
lim sup|v|→∞ |E exp{i(vT · φ(X))}| < 1.

Remark 2.1 follows by taking m = 1, k = 2, φ(x) = (x, g(x)), and B = (c, d) in Lemma A.4.

Proof of Theorem 2.4 Recall that Z is an r.v. with pdf γs(u). For the Greenwood statistic, f (x) = (x − s)2. By direct
calculations, we find

Ef (Z) = s, σ 2 = 2s(s + 1), g(Z) = (Z − s)2 − 2(Z − s) − s,

Eg3(Z)

σ 3
= 2

√
2(s2 + 5s + 4)

(s + 1)3/2
√

s
= 2

√
2

(
1 + 7

2s
+ O

(
1

s2

))
, (A14)

Eg(Z)Z2

sσ
=

√
2

(
1 + 1

s

)
= √

2

(
1 + 1

2s
+ O

(
1

s2

))
, (A15)

Eg4(Z) = 4s(15s3 + 222s2 + 579s + 372).

Note that the condition (28) is not satisfied in this case; hence Remark 2.1 is not applicable. Nevertheless, one can prove
the following. �

Lemma A.5 If |t|s ≥ c > 0, then |E eitZ2+iτZ | ≤ c1 < 1.

Proof Let Qs denote the distribution with pdf γs(u) and �s,s the normal distribution with both expectation and variance
equal to s. Let T(s) be the total variance distance between Qs and �s,s. One can then construct r.v.s Z and X on the same
probability space, having distributions Qs and �s,s, respectively, in such a way that P{Z �= X} = T(s). Now

E eitZ2+iτZ = E(eitX2+iτX ; Z = X) + E(eitZ2+iτZ ; Z �= X)

= E(eitX2+iτX ) − E(eitX2+iτX ; Z �= X) + E(eitZ2+iτZ ; Z �= X).

Hence |E eitZ2+iτZ | ≤ |E eitX2+iτX | + 2T(s). It is easy to check that T(s) = O(s−1/2) since Qs is the distribution of a sum
of s independent standard exponential r.v.s. On the other hand,

E eitX2+iτX = 1√
1 − i2ts

exp

{
− s(τ + 2st)2

2(1 − i2ts)

}
, i.e. |E eitX2+iτX | ≤ c1 < 1 as |t|s ≥ c > 0,

from which Lemma A.5 follows.
Note that |E exp{itG2

N }| = |E exp{it((nD1,s)
2 + · · · + (nDN ,s)

2)}|, so that Theorem 2.4 follows now from Theorem
2.3 with f (x) = x2, and Lemma A.5.

To begin the proof of Theorems 2.5–2.8, we first note that under conditions of these theorems, the corresponding
statistics satisfy condition (27), so that χ defined in Equation (25) is <1. �

Proof of Theorem 2.5 For the Log-spacings statistic, we have f (x) = log x. For integers m ≥ 1 and k ≥ 1, note that for
the digamma function ψ(m) and the Hurwitz zeta function ζ(m, k), we have (see Abramowitz and Stegun 1972, p. 261)

ψ(n)(s) = (−1)n−1

[
(n − 1)!

sn
+ n!

2sn+1
+

∞∑
k=1

B2k
(2k + n − 1)!
(2k)!s2k+n

]
(A16)

and

ζ(n + 1, s) = 1

n!

[
(n − 1)!

sn
+ n!

2sn+1
+

∞∑
k=1

B2k
(2k + n − 1)!
(2k)!s2k+n

]
.

In particular,

ζ(2, s) = 1

s
+ 1

2s2
+ 1

6s3
+ O

(
1

s4

)
, ζ(3, s) = 1

2s2
+ 1

2s3
+ 1

4s4
+ O

(
1

s5

)
as s → ∞. (A17)
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Using formula (4.358) of Gradshteyn and Ryzhik (2000, p. 572) and Equations (A16) and (A17), we find

Ef (Z) = E ln Z = ψ(s), g(Z) = ln Z − ψ(s) − (Z − s)s−1,

σ 2 = ζ(2, s) − s−1 = 1

2s2
(1 + O(s−1)), (A18)

Eg3(Z) = s−2 − 2ζ(3, s) = − 1

s3
(1 + O(s−1)), Eg(Z)(Z − s)2 = −1, (A19)

Eg4(Z) = 3s−2 − 2s−3 − 6s−1ζ(2, s) + 3ζ 2(2, s) + 6ζ(4, s) = 15

4s4
(1 + O(s−1)).

These equalities and Theorem 2.4 imply Theorem 2.8. �

Proof of Theorem 2.6 In this case, f (x) = x ln x. Using formulas (A13) and (A14), one can check that Ef (Z) =
EZ ln Z = sψ(s + 1), g(Z) = Z ln Z − Zψ(s + 1) − (Z − s),

σ 2 = s(s + 1)ζ(2, s + 1) − s = 1
2 (1 + O(s−1)), Eg(Z)(Z − s)2 = 3s, (A20)

Eg3(Z) = 7s − 2s(s + 1)(s + 2)ζ(3, s + 2) − 6s(s + 2)

s + 1

+ 3sζ(2, s + 2) + s(2s + 3)3

(s + 1)2(s + 2)2
− s(2s + 3)

(s + 2)2
, (A21)

Eg4(Z) = O(1).

Applying these in Theorem 2.3 completes the proof of Theorem 2.6. �

Proof of Theorem 2.7 Now let f (x) = xγ , with γ (γ − 1) �= 0. Put q(u) = �(s + u)/�(s). Using the well-known
expansion (see Abramowitz and Stegun 1972, p. 258)

ln �(κ) =
(

κ − 1

2

)
ln κ − κ + ln(2π)

2
+ 1

12κ
+ O

(
1

κ3

)
as κ → ∞,

we have Ef (Z) = q(γ ), g(Z) = Zγ − q(γ ) − (Z − s)(γ /s)q(γ ),

σ 2 = q(2γ ) −
(

1 + γ 2

s

)
q2(γ ) = γ 2(γ − 1)2

2s2(1−γ )

(
1 + 4γ 2 − 7γ + 1

3s
+ O

(
1

s2

))
, (A22)

Eg(Z)Z2

sσ
= γ (γ − 1)

sσ
q(γ ) = √

2

(
1 + γ (γ − 1)

2s
+ O

(
1

s2

))
, (A23)

Eg3(Z) = q(3γ ) − 3q(γ )q(2γ )

(
1 + 2γ 2

s

)
+ 2q3(γ )

(
1 + 3γ 2

s
+ 3γ 3(γ + 1)

2s2

)
,

= γ 2(γ − 1)2(γ 2 + 3γ − 2)

4s3(1−γ )

(
1 + O

(
1

s

))
.

Hence,
Eg3(Z)

σ 3
=

√
2(γ 2 + 3γ − 2)

2γ (γ − 1)

(
1 + O

(
1

s

))
. (A24)

Also it can be checked that Eg4(Z) = O(s−4(1−γ )) and that the condition (28) is fulfilled if γ < 1 or s, the step of spacings,
is fixed. Theorem 2.7 follows. �

Proof of Theorem 2.8 In this case, f (x) = |x − s|. By direct calculation, one can check the following:

E|Z − s| = a(s) =
√

2

πs

(
1 + O

(
1

s

))
, cov(f (z), Z) = sb(s) = O(1),

var|Z − s| = s(1 − 4sγ 2
s (s)) = s

π − 2

π

(
1 + O

(
1

s

))
, σ 2 = σ 2(s) = s

π − 2

π

(
1 + O

(
1

s

))
,

Eg(Z)(Z − s)2 = E|Z − s|(Z − s)2 = d(s) = 2
√

2√
π

s3/2
(

1 + O

(
1

s

))
,

and Eg3(z) = κ(s) = 2
√

2/π s3/2(1 + O(s−1)). Hence

Eg3(Z)

σ 3
=

√
2π

(π − 2)3/2

(
1 + O

(
1

s

))
and

Eg(Z)Z2

sσ
= 2

√
2√

π − 2

(
1 + O

(
1

s

))
.

Also one can check that Eg4(Z)/σ 4 = O(1), so that Theorem 2.8 follows. �
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Proof of Theorem 3.1 We note that, without loss of generality, one can assume that cov(f (Z), Z) = 0. Otherwise,
we can take the function f̃ (x) = f (x) − s−1cov(f (Z), Z)(x − s) instead of f (x), since Ef (Z) = Ef̃ (Z) and SN (W) =
f̃ (nW1,s) + · · · + f̃ (nWN ,s). Similar to the relation (3.8) of Rao and Sethuraman (1975) (see also Equation (4.4) of Kuo
and Jammalamadaka 1984), it can be checked that under alternatives (29)

Wm,s = Dm,s(1 − εm,n), (A25)

where

εm,n = l
(m

N

) 1

(ns)1/4
−

[
L
(m

N

)
l′
(m

N

)
+ l2

(m

N

)] 1

(ns)1/2
+ rn,

and (ns)3/4rn = O(1) almost everywhere uniformly in m. We have∫ 1

0
l(x) dx = 0,

∫ 1

0
(L(x)l′(x) + l2(x)) dx = 0,

∫ 1

0
L(x)l(x)l′(x) dx = − 1

2

∫ 1

0
l3(x) dx.

Using these facts, for any function ϑ(x) ∈ C(2), we obtain

1

N

N∑
m=1

Eϑ(Z(1 − εm,n)) = Eϑ(Z) + ‖l‖2
2

2
√

ns
EZ2ϑ ′′(Z)(1 + o(1)) (A26)

and for any function ϑ(x) ∈ C(3), we have

1

N

N∑
m=1

Eϑ(Z(1 − εm,n)) = Eϑ(Z) + ‖l‖2
2

2
√

ns
EZ2ϑ ′′(Z) − ‖l‖3

3

6(ns)3/4
EZ3ϑ ′′′(Z)(1 + o(1)). (A27)

Integrating by parts, we can see that EZϑ ′(Z) = cov(ϑ(Z), Z), EZ2ϑ ′′(Z) = cov(ϑ(Z), Z2), and EZ3ϑ ′′′(Z) =
cov(ϑ(Z), Z3). Using these relations and Equations (A26) and (A27) with g(x),g2(x), g3(x), and g(x)(x − s)2, respectively,
in place of ϑ(x), we find: if f (x) ∈ C(2) and E|g(Z)|3 < ∞, then

1

N

N∑
m=1

Eg(Z(1 − εm,n)) = ‖l‖2
2

2
√

ns
cov(g(Z), Z2)(1 + o(1)),

σ 2
N =

N∑
m=1

Eg2(Z(1 − εm,n))

= Nσ 2

(
1 + ‖l‖2

2

2σ 2
√

ns
Eg2(Z)Z2(1 + o(1))

)

= Nσ 2(1 + Cθρ
2/3
3,N N−1/6),

and if f (x) ∈ C(3) and E|g(Z)|4 < ∞
1

σ 3
N

N∑
m=1

Eg3(Z(1 − εm,n)) = Eg3(Z)(1 + ‖l‖2
2 (ns)−1/2Z2) = Eg3(Z) + Cθρ

3/4
4,N N−1/4, (A28)

1

σN ns

N∑
m=1

Eg(Z(1 − εm,n))(Z − s)2 = Eg(Z)(Z − s)2

σ
√

Ns
+ Cθρ

1/6
4,N N−5/6, (A29)

where Z2 and Z3 are as in Equation (30) and ρj,N = E|g(Z)|j/N (j−2)/2σ j ; also a bound for the remainder term is obtained
using Holder’s inequalities. Noting that Var Z2 = 2s(s + 1) and Var Z3 = 6s(s + 1)(s + 2), we write

EZ2f ′′(Z)

2
√

ns
= E(Z2f (Z))

2
√

ns
= (2N)−1/2 σ μ(s, f )

√
1 + s−1,

EZ3f ′′′(Z)

6(ns)3/4
= E(Z3f (Z))

6(ns)3/4
= σν(s, f )

N3/4
√

6

√(
1 + 1

s

)(
1 + 2

s

)
.

On using Equation (A26) with ϑ(x) = f (x), we find

N∑
m=1

Ef (Z(1 − εm,n)) = NEf (Z) + ‖l‖2
2 σ

√
N(s + 1)μ(s, f )√

2s

− ‖l‖3
3 N1/4σν(s, f )

√
1

6

(
1 + 1

s

)(
1 + 2

s

)
(1 + o(1)).
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Let Pi and Ei, i = 0, 1, denote the probability and expectation under the hypothesis and under the alternative (29),
respectively. From Corollary 2.1 and Equation (A25), one can check that

E0SN (W) =
N∑

m=1

Ef (Z) + cθσ
√

Nρ3,N , E1SN (W) =
N∑

m=1

Ef (Z(1 − εm,n)) + cθσ
√

Nρ3,N ,

Var0 SN (W) = Nσ 2(1 + cθρ3,N ), Var1 SN (W) = Nσ 2(1 + cθρ3,N ).

Hence,

�N = E1SN (W) − E0SN (W)

Var1SN (W)
= ‖l‖2

2 μ(s, f )

√
(s + 1)

2s

− ‖l‖3
3

ν(s, f )

N1/4

√
1

6

(
1 + 1

s

)(
1 + 2

s

)
(1 + o(1)). (A30)

Finally, the sequence of c.f.s E exp{itg(Z(1 − εm,n)) + iτZ} converges to the c.f. E exp{itg(Z) + iτZ} uniformly in t and
τ , so that as n → ∞

sup
(t,τ)∈�̃

|E exp{itg(Z(1 − εm,n)) + iτZ}| = χ + o(1), (A31)

where �̃ = {(t, τ) : cσ 2/E|g(Z(1 − εm,n)|3 ≤ |t| ≤ cσ 3
√

N/E|g(Z(1 − εm,n)|4, τ ∈ (−∞, ∞)}.
Note that in view of Corollary 2.1, the level-ω critical value of the f -test is equal to cω = uωσ

√
N + NEf (Z), uω =

�−1(1 − ω). On the other hand, from Equation (A25),

P1{SN (W) > cω} = P

{∑N

m=1
fm(Dm,s(1 − εm,n)) > cω

}
.

Theorem 3.1 now follows from Corollary 2.1, Theorem 2.3, relations (A28)–(A31), and the fact that

�(�N − uω

√
(1 + cθρ3,N )−1) = �(�ω(l, s, f )) − ϕ(�ω(l, s, f )) ‖l‖3

3
ν(s, f )

N1/4

√
1

6

(
1 + 1

s

)(
1 + 2

s

)
(1 + o(1)).

Equations (38)–(41) follow from Equations (34)–(37), respectively, using Equations (A14), (A15), (A18)–(A24), and
Theorem 3.1. �
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